Pristine-to-pristine regime of plastic deformation in submicron-sized single crystal gold particles
نویسندگان
چکیده
Pristine single crystalline gold particles with sizes ranging from 300 to 700 nm have been fabricated through high-temperature (1150 C) liquid de-wetting of gold thin films atop a specially designed SiO2/Si substrate for in situ transmission electron microscopy testing. Quantitative compression tests showed that these particles display cataclysmic structural collapse immediately following elastic loading to very high stresses (over 1 GPa), resulting in a nearly pristine postmortem microstructure despite the large plastic deformation experienced by the particle. This distinct class of dislocation plasticity behavior is attributed to the very high degree of structural perfection of the initial sample, resulting from high-temperature formation or annealing around the melting point. Temporally correlated dislocation nucleation from the contact interface together with the inability to form stable junctions inside is proposed to explain the pristine-to-pristine structural collapse. Upon further compression, once the contact diameter d increases to above a critical value ( 250 nm), continuous plastic deformation begins to set in under relatively low flow stress with the postmortem microstructure containing a high density of tangled dislocations, suggesting that a critical dislocation tangling volume under multiple slip is needed for the onset of dislocation storage (robust dislocation jamming) and more conventional plasticity. 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Pristine, adherent ultrathin gold nanowires on substrates and between pre-defined contacts via a wet chemical route.
We demonstrate a simple strategy of obtaining clean, ultrathin single crystal Au nanowires on substrates and interconnecting pre-defined contacts with an insight into the growth mechanism. The pristine nature enables electron transport measurement through such ultrathin wires and opens up possibilities of exploring its properties for a wide range of applications.
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملTheoretical study of the interaction of harmful heroin molecule with N-doped TiO2 anatase nanoparticles
Density functional theory calculations were carried out to study the interaction of heroin molecule with pristine and N-dopedTiO2 anatase nanoparticles. The oxygen atom of heroin molecule was found to be the binding site on the heroin molecule. In contrast, the binding site of TiO2 nanoparticle was positioned over the fivefold coordinated titanium atoms. The results showed that the adsorption e...
متن کاملTheoretical study of the interaction of harmful heroin molecule with N-doped TiO2 anatase nanoparticles
Density functional theory calculations were carried out to study the interaction of heroin molecule with pristine and N-dopedTiO2 anatase nanoparticles. The oxygen atom of heroin molecule was found to be the binding site on the heroin molecule. In contrast, the binding site of TiO2 nanoparticle was positioned over the fivefold coordinated titanium atoms. The results showed that the adsorption e...
متن کاملDFT Study of N-hydroxyurea Adsorption Behavior onto Pristine and Iron-doped Single-walled Carbon Nanotube
The interactions between N-hydroxyurea (NHU) as anticancer drug and SWCNTs (pure and Fe-doped) were investigated with density functional theory. In this study, large long-range corrected CAM-B3LYP and B3LYP were employed to investigate the stability of the different NHU-CNT and NHU/Fe-CNT complexes in the gas phase and solution (water). The presence of an iron atom would create suitable space o...
متن کامل